Not surprisingly, the clathrate gun began firing in 2007, the same year the extent of Arctic sea ice reached a tipping point. Further confirmation the clathrate gun had been fired came from Stockholm University’s Örjan Gustafsson, who reported from the Laptev Sea on 23 July 2014: “results of preliminary analyses of seawater samples pointed towards levels of dissolved methane 10-50 times higher than background levels.” Jason Box responds to the news in the conservative fashion I’ve come to expect from academic scientists on 27 July 2014: “What’s the take home message, if you ask me? Because elevated atmospheric carbon from fossil fuel burning is the trigger mechanism poking the climate dragon. The trajectory we’re on is to awaken a runaway climate heating that will ravage global agricultural systems leading to mass famine, conflict. Sea level rise will be a small problem by comparison.” Later, during an interview with Vice published 1 August 2014, Box loosened up a bit, saying, “Even if a small fraction of the Arctic carbon were released to the atmosphere, we’re fucked.” Trust me, Jason, we’re there.
If you missed PART IV of this article click here: https://www.ufodigest.com/article/extinction-1021
Simultaneous with the Laptev Sea mission, several large holes were discovered in Siberia. The reaction from an article published in the 31 July 2014 issue of Nature indicates atmospheric methane levels more than 50,000 times the usual. An article in the 4 August 2014 edition of Ecowatch ponders the holes: “If you have ever wondered whether you might see the end of the world as we know it in your lifetime, you probably should not read this story, nor study the graphs, nor look at the pictures of methane blowholes aka dragon burps.”
The importance of methane cannot be overstated. Increasingly, evidence points to a methane burst underlying the Great Dying associated with the end-Permian extinction event, as pointed out in the 31 March 2014 issue of Proceedings of the National Academy of Sciences.
As Malcolm Light reported on 14 July 2014: “There are such massive reserves of methane in the subsea Arctic methane hydrates, that if only a few percent of them are released, they will lead to a jump in the average temperature of the Earth’s atmosphere of 10 degrees C and produce a ‘Permian’ style major extinction event which will kill us all.”
Discussion about methane release from the Arctic Ocean has been quite heated (pun intended). Paul Beckwith was criticized by the conservative website, Skeptical Science. His response from 9 August 2013 is here.
Robert Scribbler provides a terrifying summary 24 February 2014, and concludes, “two particularly large and troubling ocean to atmosphere methane outbursts were observed” in the Arctic Ocean. Such an event hasn’t occurred during the last 45 million years. Scribbler’s bottom line: “that time of dangerous and explosive reawakening, increasingly, seems to be now.”
Sam Carana includes the figure below in his 10 September 2014 analysis. Based on data from several reputable sources, exponential release of methane clearly is under way.
Extensive Methane Hydrate Formation Dissolving
Venting to the Atmosphere from Sediments of the East Siberian Arctic Shelf
Natalia Shakhova, Igor Semiletov at al
Click here: http://www.sciencemag.org/content/327/5970/1246.abstract
‘Fountains’ of Methane 1,000 meters across Erupting from Arctic Ice
The Daily Mail – December 2011
A “Greenhouse Gas” 30 times more potent than carbon dioxide
Is Erupting into Huge “Methane Plumes” Across the Arctic Regions
Click the link below to read the entire article:
2. Warm Atlantic water is defrosting the Arctic as it shoots through the Fram Strait (Science, January 2011). Extent of Arctic sea ice passed a tipping point in 2007, according to research published in the February 2013 issue of The Cryosphere. On 6 October 2012, Truth-out cites Peter Wadhams, professor of ocean physics at Cambridge University: “The Arctic may be ice-free in summer as soon as 2015. Such a massive loss would have a warming effect roughly equivalent to all human activity to date. In other words, a summer ice-free Arctic could double the rate of warming of the planet as a whole.” Subsequent melting of Arctic ice is reducing albedo, hence enhancing absorption of solar energy. “Averaged globally, this albedo change is equivalent to 25% of the direct forcing from CO2 during the past 30 years,” according to research published in the 17 February 2014 issue of the Proceedings of the National Academy of Sciences. Destabilization of the deep circulation in the Atlantic Ocean may be “spasmodic and abrupt rather than a more gradual increase” as earlier expected, according to a paper published in the 21 February 2014 issues of Science. Models continue to underestimate results relative to observations, as reported in the 10 March 2014 issue of Geophysical Research Letters.
3. Siberian methane vents have increased in size from less than a meter across in the summer of 2010 to about a kilometer across in 2011 (Tellus, February 2011). According to a paper in the 12 April 2013 issue of Science, a major methane release is almost inevitable, which makes me wonder where the authors have been hiding. Almost inevitable, they report, regarding an ongoing event. Trees are tipping over and dying as permafrost thaws, thus illustrating how self-reinforcing feedback loops feed each other.
4. Peat in the world’s boreal forests is decomposing at an astonishing rate (Nature Communications, November 2011)
5. Invasion of tall shrubs warms the soil, hence destabilizes the permafrost (Environmental Research Letters, March 2012)
6. Greenland ice is darkening (The Cryosphere, June 2012). As reported in the 8 June 2014 issue of Nature Geoscience, “a decrease in the albedo of fresh snow by 0.01 leads to a surface mass loss of 27 Gt” annually. Any reduction in albedo is a disaster, says Peter Wadhams, head of the Polar Oceans Physics Group at Cambridge University. As pointed out by Robert Scribbler on 1 August 2014, we’ve removed the plug and, like the water leaving a tub, acceleration is under way: “Extensive darkening of the ice sheet surface, especially near the ice sheet edge, is resulting in more solar energy being absorbed by the ice sheet. Recent studies have shown that edge melt results in rapid destabilization and speeds glacier flows due to the fact that edge ice traditionally acts like a wall holding the more central and denser ice pack back.”
7. Methane is being released from the Antarctic, too (Nature, August 2012). According to a paper in the 24 July 2013 issue of Scientific Reports, melt rate in the Antarctic hascaught up to the Arctic and the West Antarctic Ice Sheet is losing over 150 cubic kilometres of ice each year according to CryoSat observations published 11 December 2013, and Antarctica’s crumbling Larsen-B Ice Shelf is poised to finish its collapse, according to Ted Scambos, a glaciologist at the National Snow and Ice Data Center at the annual meeting of the American Geophysical Union. A paper in the 12 September 2014 issue of Science concluded the major collapse of the Larsen-B Ice Shelf in 2002 resulted from warm local air temperatures, indicating the importance of global and local warming on ice dynamics. Two days later a paper in Nature Climate Change indicates that this sensitivity to temperature illustrates “that future increases in precipitation are unlikely to offset atmospheric-warming-induced melt of peripheral Antarctic Peninsula glaciers.”Therate of loss during the period 2010-2013 was double that during the period 2005-2010, according to a paper in the 16 June 2014 issue of Geophysical Research Letters. Loss of Antarctic ice is accelerating even in areas long considered stable, as documented in the 24 July 2013 edition of Scientific Reports. Further confirmation of large methane releases is revealed by noctilucent clouds over the southern hemisphere from 21 November 2013 to 6 December 2013.
8. Forest and bog fires are growing (in Russia, initially, according to NASA in August 2012), a phenomenon consequently apparent throughout the northern hemisphere (Nature Communications, July 2013). The New York Times reports hotter, drier conditions leading to huge fires in western North America as the “new normal” in their 1 July 2013 issue. A paper in the 22 July 2013 issue of the Proceedings of the National Academy of Sciences indicates boreal forests are burning at a rate exceeding that of the last 10,000 years. Los Alamos National Laboratory catches on during same month. According to reports from Canada’s Interagency Fire Center, total acres burned to date in early summer 2014 are more than six times that of a typical year. This rate of burning is unprecedented not just for this century, but for any period in Canada’s basement forest record over the last 10,000 years. A comprehensive assessment of biomass burning, published in the 21 July 2014 issue of Journal of Geophysical Research: Atmospheres, explains most of the global-average increase in temperature and explains that biomass burning causes much more global warming per unit weight than other human-associated carbon sources. By early August 2014 tundra fires were burning just 70 miles south of Arctic Ocean waters and the fires were creating their own weather via pyrocumulus clouds.
9. Cracking of glaciers accelerates in the presence of increased carbon dioxide (Journal of Physics D: Applied Physics, October 2012)
http://1.bp.blogspot.com/_pUeDI6XAqAA/S_Rj5Mj6yxI/AAAAAAAAADI/0t5og3eMn6Y/s1600/aGlacier3.JPG
10. The Beaufort Gyre apparently has reversed course (U.S. National Snow and Ice Data Center, October 2012). Mechanics of this process are explained by the Woods Hole Oceanographic Institution here.
11. Exposure to sunlight increases bacterial conversion of exposed soil carbon, thus accelerating thawing of the permafrost (Proceedings of the National Academy of Sciences, February 2013). Subsequent carbon release “could be expected to more than double overall net C losses from tundra to the atmosphere,” as reported in the March 2014 issue of Ecology. Arctic permafrost houses about half the carbon stored in Earth’s soils, an estimated 1,400 to 1,850 petagrams of it, according to NASA. Peat chemistry changes as warming proceeds, which accelerates the process, as reported in the 7 April 2014 issue of Proceedings of the National Academy of Sciences.
12. The microbes have joined the party, too, according to a paper in the 23 February 2013 issue of New Scientist
13. Summer ice melt in Antarctica is at its highest level in a thousand years: Summer ice in the Antarctic is melting 10 times quicker than it was 600 years ago, with the most rapid melt occurring in the last 50 years (Nature Geoscience, April 2013). According to a paper in the 4 March 2014 issue of Geophysical Research Letters — which assumes relatively little change in regional temperature during the coming decades — “modeled summer sea-ice concentrations decreased by 56% by 2050 and 78% by 2100″ (Robert Scribbler’s in-depth analysis is here). Citing forthcoming papers in Science and Geophysical Research Letters, the 12 May 2014 issue of the New York Times reported: “A large section of the mighty West Antarctica ice sheet has begun falling apart and its continued melting now appears to be unstoppable. … The new finding appears to be the fulfillment of a prediction made in 1978 by an eminent glaciologist, John H. Mercer of the Ohio State University. He outlined the vulnerable nature of the West Antarctic ice sheet and warned that the rapid human-driven release of greenhouse gases posed ‘a threat of disaster.’” Although scientists have long expressed concern about the instability of the West Antarctic Ice Sheet (WAIS), a research paper published in the 28 August 2013 of Nature indicates the East Antarctic Ice Sheet (EAIS) has undergone rapid changes in the past five decades. The latter is the world’s largest ice sheet and was previously thought to be at little risk from climate change. But it has undergone rapid changes in the past five decades, signaling a potential threat to global sea levels. The EAIS holds enough water to raise sea levels more than 50 meters. According to a paper in the July 2014 issue of the same journal, the southern hemisphere’s westerly winds have been strengthening and shifting poleward since the 1950s, thus quickening the melt rate to the point of — you guessed it — “results that shocked the researchers.”
14. Increased temperature and aridity in the southwestern interior of North America facilitates movement of dust from low-elevation deserts to high-elevation snowpack, thus accelerating snowmelt, as reported in the 17 May 2013 issue of Hydrology and Earth System Sciences.
15. Floods in Canada are sending pulses of silty water out through the Mackenzie Delta and into the Beaufort Sea, thus painting brown a wide section of the Arctic Ocean near the Mackenzie Delta brown (NASA, June 2013). Pictures of this phenomenon are shown on this NASA website.
16. Surface meltwater draining through cracks in an ice sheet can warm the sheet from the inside, softening the ice and letting it flow faster, according to a study accepted for publication in the Journal of Geophysical Research: Earth Surface (July 2013). ** Further support for this idea was reported in the 29 September 2014 issue of Nature Communications. ** It appears a Heinrich Event has been triggered in Greenland. Consider the description of such an event as provided by Robert Scribbler on 8 August 2013:
In a Heinrich Event, the melt forces eventually reach a tipping point. The warmer water has greatly softened the ice sheet. Floods of water flow out beneath the ice. Ice ponds grow into great lakes that may spill out both over top of the ice and underneath it. Large ice damns (sic) may or may not start to form. All through this time ice motion and melt is accelerating. Finally, a major tipping point is reached and in a single large event or ongoing series of such events, a massive surge of water and ice flush outward as the ice sheet enters an entirely chaotic state. Tsunamis of melt water rush out bearing their vast floatillas (sic) of ice burgs (sic), greatly contributing to sea level rise. And that’s when the weather really starts to get nasty. In the case of Greenland, the firing line for such events is the entire North Atlantic and, ultimately the Northern Hemisphere.
17. Breakdown of the thermohaline conveyor belt is happening in the Antarctic as well as the Arctic, thus leading to melting of Antarctic permafrost (Scientific Reports, July 2013). In the past 60 years, the ocean surface offshore Antarctica became less salty as a result of melting glaciers and more precipitation, as reported in the 2 March 2014 issue of Nature Climate Change.
18. Loss of Arctic sea ice is reducing the temperature gradient between the poles and the equator, thus causing the jet stream to slow and meander (see particularly the work of Jennifer Francis). The most extreme “dipole” on record occurred during 2013-2014, as reported in the Geophysical Research Letters. One result is the creation of weather blocks such as the recent very high temperatures in Alaska. This so-called “polar vortex” became widely reported in the United States in 2013 and received the attention of the academic community when the 2013-2014 drought threatened crop production in California. Extreme weather events are occurring, as reported in the 22 June 2014 issue of Nature Climate Change. Also called Rossby Waves, these atmospheric events are on the rise, as reported in the 11 August 2014 edition of the Proceedings of the National Academy of Science.
As one result of the polar vortex, boreal peat dries and catches fire like a coal seam. The resulting soot enters the atmosphere to fall again, coating the ice surface elsewhere, thus reducing albedo and hastening the melting of ice. Each of these individual phenomena has been reported, albeit rarely, but to my knowledge the dots have not been connected beyond this space. The inability or unwillingness of the media to connect two dots is not surprising, and has been routinely reported (recently including here with respect to climate change and wildfires) (July 2013)
19. Arctic ice is growing darker, hence less reflective (Nature Climate Change, August 2013)
20. Extreme weather events drive climate change, as reported in the 15 August 2013 issue of Nature (Nature, August 2013). Details are elucidated via modeling in the 6 June 2014 issue of Global Biogeochemical Cycles.
21. Drought-induced mortality of trees contributes to increased decomposition of carbon dioxide into the atmosphere and decreased sequestration of atmospheric carbon dioxide. Such mortality has been documented throughout the world since at least November 2000 in Nature, with recent summaries in the February 2013 issue of Nature for the tropics and in the August 2013 issue of Frontiers in Plant Science for temperate North America.
One extremely important example of this phenomenon is occurring in the Amazon, where drought in 2010 led to the release of more carbon than the United States that year (Science, February 2011). The calculation badly underestimates the carbon release. In addition, ongoing deforestation in the region is driving declines in precipitation at a rate much faster than long thought, as reported in the 19 July 2013 issue of Geophysical Research Letters. An overview of the phenomenon, focused on the Amazon, was provided by Climate News Network on 5 March 2014.
Tropical rain forests, long believed to represent the primary driver of atmospheric carbon dioxide, are on the verge of giving up that role. According to a 21 May 2014 paper published in Nature, “the higher turnover rates of carbon pools in semi-arid biomes are an increasingly important driver of global carbon cycle inter-annual variability,” indicating the emerging role of drylands in controlling environmental conditions.
PART VI of this series continues tomorrow Thursday, October 23, 2014! https://www.ufodigest.com/article/extinction-1023